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ABSTRACT

The pathways responsible for flowering time in Arabidopsis thaliana comprise one of the best characterized
genetic networks in plants. We harness this extensive molecular genetic knowledge to identify potential
flowering time quantitative trait genes (QTGs) through candidate gene association mapping using 51
flowering time loci. We genotyped common single nucleotide polymorphisms (SNPs) at these genes in 275
A. thaliana accessions that were also phenotyped for flowering time and rosette leaf number in long and
short days. Using structured association techniques, we find that haplotype-tagging SNPs in 27 flowering
time genes show significant associations in various trait/environment combinations. After correction for
multiple testing, between 2 and 10 genes remain significantly associated with flowering time, with CO
arguably possessing the most promising associations. We also genotyped a subset of these flowering time
gene SNPs in an independent recombinant inbred line population derived from the intercrossing of 19
accessions. Approximately one-third of significant polymorphisms that were associated with flowering time
in the accessions and genotyped in the outbred population were replicated in both mapping populations,
including SNPs at the CO, FLC, VIN3, PHYD, and GA1 loci, and coding region deletions at the FRI gene. We
conservatively estimate that �4–14% of known flowering time genes may harbor common alleles that
contribute to natural variation in this life history trait.

A major ecological trait in Arabidopsis thaliana is the
timing of the transition to flowering, which de-

fines the shift from vegetative to reproductive de-
velopment (Koornneef et al. 2004; Engelmann and
Purugganan 2006). Flowering time in A. thaliana is a
complex trait that is responsive to multiple environ-
mental cues, including photoperiod, vernalization,
ambient temperature, and nutrient status (Engelmann

and Purugganan 2006). The range of variation in
flowering time can be large, with a significant amount
of this diversity arising from heritable genetic variation
(Van Berloo and Stam 1999; Ungerer et al. 2003).

Flowering time in this species has become a model for
understanding complex trait genetics in plants, in part
because of how extensively it has been characterized via
forward genetic approaches (Simpson and Dean 2002).

The flowering time genes represents one of the best
studied functional genetic networks in plants, as geneti-
cists have identified .60 genes that regulate flowering
time (Mouradov et al. 2002; Komeda 2004; Baurle and
Dean 2006) (see Figure 1 and supporting information,
Figure S1). Understanding the evolutionary ecology of
flowering time, however, requires us to determine not
only the genes that control this trait, but also the specific
genes that cause natural variation in flowering time.

Flowering time has thus been the subject of an inten-
sive quantitative trait locus (QTL) mapping effort by the
community of A. thaliana researchers, with numerous
QTL mapping studies published in the last 15 years
(Clarke et al. 1995; Jansen et al. 1995; Kuittinen et al.
1997; Stratton 1998; El-Assal et al. 2001; Maloof et al.
2001; Ungerer et al. 2002, 2003; Weinig et al. 2002, 2003;
Bandaranayake et al. 2004; El-Lithy et al. 2004;
Juenger et al. 2005; Werner et al. 2005b). QTL mapping
studies of flowering time have defined at least 28 loci that
affect natural variation in flowering time among individ-
ual accessions of this species under different conditions.
Molecular studies have conclusively shown that CRYPTO-
CHROME2 (CRY2) (El-Assal et al. 2001), FRIGIDA (FRI)
( Johanson et al. 2000), FLOWERING LOCUS C (FLC)
(Werner et al. 2005a), FLM (Werner et al. 2005b),
PHYTOCHROME A (PHYA) (Maloof et al. 2001), PHYB
(Filiault et al. 2008), PHYC (Balasubramanian et al.
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2006), and PHYD (Aukerman et al. 1997) all harbor
natural polymorphisms that alter flowering time. Nearly
half of the polymorphisms at these genes are rare, with
the minor allele frequency (MAF) of the causal poly-
morphism at ,10%, and some of these polymorphisms
are accession specific.

Despite the wealth of knowledge about the population
and quantitative genetics of flowering time in A. thaliana,
a substantial amount of natural variation in flowering
time remains unexplained (Werner et al. 2005a). In
recent years, structured association mapping has
emerged as a major tool in the search for genes that
underlie quantitative trait variation (e.g., Yu et al. 2006),
including natural variation in flowering time in A.
thaliana. Although genomewide association studies have
gained prominence in recent years (Hirschhorn and
Daly 2005), candidate gene association studies remain a
key approach to gene mapping (Tabor et al. 2002).
Whereas genomewide studies scan large numbers of
markers across the entire genome, candidate gene
studies specifically target genes with known functions in
the trait of interest, with the expectation that doing
so may enrich for the number of meaningful trait
associations.

The candidate gene approach has proven successful
in many instances, such as in the identification of genes
for trait variation in wild and cultivated maize (Wilson

et al. 2004; Weber et al. 2007, 2008), pine (Gonzalez-
Martinez et al. 2007), and human diseases (Vaisee et al.
2000; Ueda et al. 2003). In model organisms, such as A.
thaliana, candidate gene studies are a potentially power-
ful approach, because many of the genetic pathways
underlying ecologically significant traits have been
dissected through forward genetic approaches, pro-
viding strong candidates for genes and pathways that
might underlie natural trait variation (Ehrenreich et al.
2007).

The large number of known flowering time genes
identified through molecular developmental genetics
makes flowering time a particularly attractive trait for
candidate gene association studies. There have been
attempts to use candidate gene approaches to identify
flowering time quantitative genes in A. thaliana (e.g.,
Caicedo et al. 2004; Olsen et al. 2004), but a compre-
hensive analysis using a large set of candidate loci has yet
to be undertaken. Using candidate gene haplotype
tagging SNPs (htSNPs), we conduct networkwide struc-
tured association mapping using 51 A. thaliana flower-
ing time genes and compare our candidate gene results
to those from randomly selected background loci. We
then retest a subset of our significant associations in an
independent panel of inbred lines derived from the
intercrossing of 19 accessions, which were genotyped at
about half of the flowering time htSNPs. This two-stage
approach of association mapping in the natural acces-
sions and the inbred lines allows us to identify several
novel candidates for flowering time variation.

MATERIALS AND METHODS

Resequencing data: The resequencing data used in this
article are from several sources. Resequencing data for 48 of
the flowering time candidate genes for 24 accessions are
detailed in Flowers et al. (2009). These data encompass the
entire gene, including �1 kb of the promoter region and
�500 bp of the 39 flanking region. The genes and accessions
are listed in Table S1 and Table S2. These same accessions are
among the 96 used by Nordborg et al. (2005) in generating
their data, from which we selected 319 background fragments
for inclusion in our study. For the Nordborg et al. (2005) data,
we used only alleles from the 24 accessions overlapping those
used by Flowers et al. (2009) in addition to the Columbia
reference allele. Previously published resequencing data were
used for the genes CRY2, FLC, and FRI (Caicedo et al. 2004;
Olsen et al. 2004; Stinchcombe et al. 2004), and the specific
accessions and the total number of accessions used in these
studies are variable and different from the Flowers et al.
(2009) data. All flowering time gene alignments are provided
in File S1. A list of the Nordborg et al. (2005) fragments used
in this study are included in Table S3.

Haplotype-tagging SNP selection: HtSNPs were chosen
using an algorithm similar to one proposed by Carlson

et al. (2004) that grouped all common SNPs (MAF $ 0.1) in a
multiple sequence alignment for a locus into bins on the
basis of their patterns of linkage disequilibrium, with the
threshold for binning being r2¼ 1. Sites with gaps or missing
data were ignored by the binning procedure. From each bin,
one SNP was randomly selected to be the htSNP representing
that bin. The median and mean numbers of htSNPs
identified per candidate gene were 8 and 9.8, respectively;
for the background fragments, the median and mean
numbers of htSNPs were 2 and 2.7, respectively. One
hundred eighty-seven of these background fragments were
genotyped at all identified htSNPs, while 131 were geno-
typed at only one randomly selected htSNP. The identified
htSNPs were genotyped in a panel of 475 accessions (listed in
Table S4). The DNA used for genotyping was isolated from
the leaves of plants grown under 24-hr light for 3 weeks at
New York University. QIAGEN 96-well DNAeasy kits were
used to extract the DNA. Genotyping was done using the
Sequenom MassArray technology and was conducted by
Sequenom (http://www.sequenom.com). Overall, �87% of
the htSNPs were successfully genotyped in $375 accessions,
resulting in the genotyping of 574 background htSNPs and
383 flowering time htSNPs. The SNP genotypes are available
in Table S5.

Population structure assessment: Two programs—STRUC-
TURE (Pritchard et al. 2000; Falush et al. 2003) and InStruct
(Gao et al. 2007)—were used to determine the extent of
population structure in our panel of accessions. These
programs are very similar, with the primary difference being
that InStruct explicitly estimates selfing rates along with
population structure. In these analyses, one SNP from each
of the 319 background loci was used. For loci with multiple
genotyped SNPs, one was randomly selected for inclusion.
Only accessions with unique multilocus genotypes across all
markers were included and in cases where accessions were
identical across loci, one accession was included in the analysis
as the representative of that genotype. This was done to
prevent biases in population structure estimation that might
arise from the inclusion of replicates of the same accession,
which are common in the stock center. Both programs were
run three times across a range of K values starting at K¼ 1 and
ending at K ¼ 30 and the run with the median likelihood was
used for analyses. In STRUCTURE, the correlated frequencies
with admixture model was used. In InStruct, mode 2 was used,
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which infers population structure and selfing rates at the
population level.

Calculation of haplotype sharing: Haplotype sharing (K)
was computed from a data matrix including all accessions and
their genotypes at the background loci. As in Zhao et al.
(2007), haplotype sharing was computed between every
possible pairwise combination of accessions as the total
number of haplotypes in common between the accessions
divided by the total number of loci with present data for both
individuals. This provides a measure of the proportion of loci
that are identical in state between any pair of accessions.

Phenotyping: Phenotype data used for association mapping
with the natural accessions are from growth chamber ex-
periments conducted at North Carolina State University’s
Phytotron facility and are previously published (Olsen et al.
2004) (see Table S5). Of the 475 accessions we genotyped, 275
had phenotype data we used in association analyses. The
MAGIC lines and their construction are described elsewhere
(Scarcelli et al. 2007; Kover et al. 2009). Importantly, 192
flowering time htSNPs, accounting for a subset of the htSNPs
from 47 genes, have been genotyped in the MAGIC lines. The
MAGIC lines are the result of seven generations of single seed
inbreeding after the intercrossing phase. Growth chamber
phenotyping of the MAGIC lines was done at New York
University using EGC walk-in chambers under both long-day
conditions (14-hr light: 10-hr dark) and short-day conditions
(10-hr light: 14-hr dark) at 20�. Five individuals each for 360
MAGIC lines were grown in a randomized design in 72-cell
growing flats. The flats were repositioned within the chamber
every 7 days and watered by subirrigation every 4 days. We
phenotyped days to flowering, which is measured as the
number of julian days after which the primary inflorescence
had extended .1 mm above the rosette, and rosette leaf
number, which is the number of total rosette leaves on a plant at
bolting and is frequently used as a surrogate for flowering time.

Association tests: Two hundred seventy-five phenotyped
accessions with nonredundant multilocus genotypes were used
for association mapping. We used a previously described mixed
model approach for conducting structured associations (Yu

et al. 2006; Zhao et al. 2007). The model used was of the form

Y ¼ Xa 1 Qb 1 Zu 1 e;

with Y a vector of phenotypes, X a vector of single locus
genotypes, a a vector of fixed effects of the n � 1 genotype
classes, Q a matrix of the K � 1 subpopulation ancestry
estimates for each individual from STRUCTURE, b a vector of
the fixed effects for each of the subpopulations, Z an identity
matrix, u a matrix of random deviates due to genomewide
relatedness (as inferred from K), and e a vector of residual
errors. PROC MIXED was used for all tests and was run in SAS
v9.1.3. HtSNP effect measurements were conducted using a
reduced structured association model, excluding the kinship
matrix. For the MAGIC lines, one-way ANOVAs were con-
ducted in JMP v5 to test whether htSNPs were associated with
differences in flowering time across the lines. False discovery
rate (FDR) analyses were conducted using QVALUE in R
(Storey 2002; Storey and Tibshirani 2003).

RESULTS AND DISCUSSION

Identification and genotyping of htSNPs at flowering
time genes and background loci: A. thaliana typically
exhibits strong linkage disequilibrium on the scale of
�5–10 kb (Kim et al. 2007). To take advantage of this
short-range disequilibrium for association mapping, we
identified htSNPs representative of common haplotype
structure at 51 candidate genes that we recently rese-
quenced (see Figure 1 and Table S1). In all but a few
cases, the entire coding region as well as 1 kb of the 59-
UTR and promoter, and 0.5 kb of downstream region
was sequenced. Details of the levels and patterns of
nucleotide variation at these flowering time genes are
reported elsewhere (Flowers et al. 2009).

We also identified htSNPs in 319 background frag-
ments that were previously resequenced (Nordborg

et al. 2005). One hundred eighty-seven of these fragments

Figure 1.—The flower-
ing time genetic network.
The genes included in this
study (in blue) and their in-
teractions are depicted. Also,
included in gray at the base
of the network are the ABC
genes, which are essential
in the determination of flo-
ral meristems. Description
of the construction of the
network is described in Fig-
ure S1.
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were comprehensively genotyped in the same manner
as the candidate genes; for the remaining fragments,
only 1 htSNP was genotyped from each fragment. We
successfully genotyped 957 htSNPs from 475 A. thaliana
accessions at the candidate genes and the background
loci.

Population structure in the genotyped accessions: A.
thaliana possesses extensive population structure that
can confound genetic association studies (e.g., Zhao

et al. 2007), and we attempted to identify population
structure specific to our sample using both the program
STRUCTURE (Pritchard et al. 2000; Falush et al.
2003) and the related program InStruct (Gao et al.
2007), which explicitly accounts for inbreeding while
estimating population structure.

Runs of STRUCTURE and InStruct produced very
different most likely K estimates, with K ¼ 10 and K ¼ 2
having the highest likelihoods for STRUCTURE and
InStruct, respectively. This suggests, as has been re-
ported elsewhere (Gao et al. 2007), that the inclusion of
selfing in population structure estimation can have a
dramatic effect on the determination of a most likely K
value. Ancestry assignments of accessions to particular
subpopulations, however, were very similar between the
two methods (see Figure S2). Results from K ¼ 2
corroborate previous findings of large-scale genetic
differentiation between European and Asian A. thaliana
accessions, with a region of admixture existing in
Eastern Europe (Schmid et al. 2006). Subpopulations
identified at K . 2 appear to differentiate subgroups of
European ancestry (e.g., Portuguese-Spanish accessions,
Scandinavian accessions), which constitute the bulk of
our sample. Analysis of the extent of haplotype sharing
between all pairs of accessions shows that despite clear
population structure detectable via model-based ap-
proaches, most individuals share 30–60% of their alleles
(see Figure S3).

Structured association mapping with flowering time
SNPs: Previous studies had shown that a mixed model
analysis correcting for both population structure and
pairwise kinship is the best, and we conducted an
association analysis on the background SNPs at each
locus (see materials and methods) to identify the best
approach for our sample.

We examined variation in flowering time, a key life
history trait in A. thaliana. The phenotype data used was
days to flowering (FT) and rosette leaf number (RLN)
in both long day (LD) and short day (SD) growth
chamber conditions, measured for 275 accessions. All
these flowering time traits were highly heritable, with
broad sense heritabilities (H2), ranging from 0.49 to 0.7
in the accessions and from 0.33 to 0.65 in the MAGIC
lines (Table S6).

We found that a mixed model including the K
haplotype sharing matrix (Yu et al. 2006; Zhao et al.
2007) and a population ancestry matrix Q from a
STRUCTURE run of K ¼ 10 (Yu et al. 2006; Zhao et al.

2007) performed best in reducing confounding pop-
ulation structure and relatedness bias, with the P-value
distribution most closely resembling a uniform distri-
bution (see Figure 2). On the basis of our results using
Q matrices from STRUCTURE runs from K¼ 2 through
K¼ 10 (results for intermediate K values are not shown),
it appeared that using a Q matrix from a run of K¼ 9 or
10 was especially important to reducing the high rate of
nominal significance. It should be noted, however, that
this model (the K 1 Q10 model) does not completely
eliminate the effects of population structure. Given
these results, we ran association tests for all htSNPs using
the K 1 Q10 mixed model, and found that between 29
and 42 flowering time htSNPs were nominally signifi-
cant in any given trait/environment combination (for
example rosette leaf number in short days, RLN-SD).

While these analyses identify a large number of flower-
ing time gene htSNPs associated with either flowering
time and/or rosette leaf number, these analyses have
two problems. First, despite taking into consideration
both population structure and pairwise kinship among
our samples, the distributions of associations with back-
ground SNPs are still biased, indicating that the con-
founding effects of population stratification have not
been eliminated. Second, we need to account for the
multiple statistical tests used in our association analysis
of flowering time SNPs.

To account for the bias in distributions that result
from cryptic population structure, we use empirical
rather than nominal significance thresholds. In this
way, we focus only on candidate gene htSNPs whose
nominal significance is in the 5% tail of the P-value
distribution of the mixed model analysis for all SNPs.
Using this empirical significance threshold, we find
that 50 candidate gene htSNPs are in the 5% tail of all
SNPs in at least one environment (see Figure 3). These
htSNPs represent only 27 of the flowering time genes,
due to multiple htSNPs in the same gene showing sig-
nificant associations; FLC, GA1, and HOS1 each had
four empirically significant htSNPs, while ELF5, FD,
FES1, TFL2, and VIN3L each had three significant
htSNPs.

Sixteen of these 27 genes were significant in at least
two traits. CO, ELF5, and FES1 each had at least one
htSNP associated with every trait. Three genes—GA1,
GAI, and PHYD—had an htSNP that exhibited associa-
tions with three traits. As an internal control, we also
tested FRI functionality for associations by using the
genotypes of the accessions at the Columbia- and
Landsberg erecta-type deletions as markers; these tests
were all highly significant (P , 0.01).

The second problem we face is multiple testing, and
we approach this issue in two ways. One method of
adjusting for multiple tests is the Bonferroni correc-
tion, and using this traitwise correction we find that
htSNPs in only two candidate genes—CO and GAI—
are significant (see Figure 3). It is generally acknowledged,
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however, that the Bonferroni can be overly conservative,
particularly in genomics studies where a large number
of tests are undertaken. A standard approach is to
estimate the false discovery rate (FDR), which allows
one to estimate the proportion of significant tests that
will be false positives by chance (Storey 2002; Storey

and Tibshirani 2003). We estimate the number of
htSNPs that are significant at FDR values of 0.05, 0.1,
and 0.2 (see Table 1). Interestingly, no short-day trait
was significant at these low FDR values. Only four
htSNPs met a FDR of 0.05; these were in CO (2 htSNPs),
GAI, and VIN3-L (see Figure 3). The number of sig-
nificant flowering time htSNPs increases to 10 and 16,
with FDR values of 0.1 and 0.2, respectively. In the latter
case, we expect three to four false positives at the given
FDR threshold.

For associations with FDR # 0.1, we further examined
the MAFs, allele effects, and percentage of phenotypic
variance explained by the htSNPs (see Table 2). The
associated htSNPs ranged in minor allele frequency
from 0.01 to 0.41. Interestingly, GAI p358 had a minor
allele frequency of 0.01 in the mapping panel, which was
far different from its MAF of 0.12 in the original
resequencing data. Analysis of this association suggests
it is likely to be a false positive, driven by a small number
of individuals possessing the minor allele and an in-

dividual within this group carrying the highest trait
value of all accessions.

The other associations significant at an FDR # 0.1
were all more plausible, as they all possessed larger
numbers of individuals with the minor allele, making it
less likely that they are due to outlier effects. The addi-
tive phenotypic difference between the homozygous ge-
notypes (excluding GAI p358), ranged from 2.8 to 13.24
days for LD-FT for these significantly associated SNPs,
and was 1.14 days for CO p795 in LD-RLN. In general,
the detected associations had moderate effects, explain-
ing between 2 and 9% of the phenotypic variance, with
most associations explaining ,5% of the variation in
flowering time traits.

Association mapping in multiparent advanced
generation intercross (MAGIC) lines: We initially tried
to determine whether we could replicate our results
using the comparison of our candidate gene associa-
tions to quantitative trait loci from biparental recombi-
nant inbred lines (RILs), as has become common in
association studies in this species (Ehrenreich et al.
2007; Zhao et al. 2007). However, we found that no
available RIL population segregates for more than a
small fraction of the flowering time-associated htSNPs
in our study. This was problematic and led us to try
to replicate our associations in a set of MAGIC lines

Figure 2.—Cumulative density func-
tions (cdfs) for the background loci us-
ing several alternative models. The
naı̈ve association is a one-way ANOVA,
whereas the models including K (i.e.,
haplotype sharing) and/or Q (i.e.,
STRUCTURE ancestry estimates) are
variants of the full model described in
materials and methods. The axes
are restricted to a maximum of 0.5 to fa-
cilitate comparison of the different
models. The y ¼ x line depicts the cdf
of a uniform distribution. Results from
Q matrices for intermediate K values
are excluded from the plot for the pur-
pose of clarity, and because they per-
formed noticeably worse than the K ¼
10 matrix.

Association Mapping in Arabidopsis 329



recently generated from the intercrossing of 19 differ-
ent progenitors. These lines segregate for all common
SNPs that were genotyped in the natural accessions
(Scarcelli et al. 2007; Kover et al. 2009).

We genotyped 192 htSNPs from the flowering time
genes in a set of 360 MAGIC lines, including 20 of the
50 htSNPs that appeared promising from the SNP-
based association tests in the accessions (before correct-
ing for multiple tests). These significant htSNPs were
located in 14 flowering time genes (see Table 3). We also
genotyped the two common loss-of-function deletions
at FRI in the MAGIC lines. The MAGIC lines were
phenotyped for the same traits as those analyzed in the
natural accessions (i.e., LD-FT, LD-RLN, SD-FT, SD-

RLN) and association results were compared between
the two populations.

Of the flowering time htSNPs that exhibited an
association in the accessions and were genotyped in
the MAGIC lines, seven htSNPs representing six of 32
associations (�20%) had some level of corroboration
between the two line sets (see Table 3). No htSNP that
was genotyped in both sets of lines exhibited an
identical pattern of association between the two pop-
ulations. The replicated htSNPs occurred in CO, FLC
(two SNPs), GA1 (two SNPs), PHYD, and VIN3. It should
be noted that although the significant FRI htSNP was
not associated with any trait in these data, direct testing
on FRI loss-of-function deletions produced a significant

Figure 3.—Associations across all flowering and background SNPs. Results for the K 1 Q10 model at each genotyped SNP are
plotted as �log (P-value) by physical position in the genome. Candidate gene htSNPs that are empirically significant are high-
lighted by light blue or yellow vertical lines. Empirical 5%-, Bonferroni 5%- and FDR 5%-corrected multiple-testing thresholds for
significance are plotted by trait as blue, red, and green horizontal lines, respectively. These lines are not shown if they surpass the
most significant locus for a trait.
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result (P # 0.01) for all traits and environments. These
results give corroborative evidence for a subset of the
discovered associations, suggesting that they may be
biologically meaningful.

Of the other 172 flowering time htSNPs, we have
identified 21 in 12 genes that were associated in the
MAGIC mapping population (FDR # 0.1) but did not
show significant associations in accessions. From the
viewpoint of the candidate gene association mapping in
accessions, these may represent false negatives.

Candidate gene association mapping of flowering
time in A. thaliana: The search for quantitative trait
genes (QTGs)in plants has been a central goal of plant
biology in recent years, and association mapping has
emerged as a major approach in the identification of
these loci. In general, the rapid decay of linkage
disequilibrium in A. thaliana suggests that association
mapping should be a useful approach to localizing QTL
to genomic regions that may span only a few genes (Kim

et al. 2007), and this species has thus emerged as a
platform to test methods for association mapping
(Zhao et al. 2007).

Both genomewide (Zhao et al. 2007) and candidate
gene association studies (Olsen et al. 2004; Stinchcombe

et al. 2004) in this species have begun to identify genes
for quantitative trait variation, but the challenges of
association mapping in A. thaliana are well documented
(Aranzana et al. 2005; Weigel and Nordborg 2005;
Zhao et al. 2007). First, variation in most traits is
correlated with the population structure that exists in
this species, likely causing a large number of false
positive genotype–phenotype correlations throughout
the genome (Zhao et al. 2007), although it is possible to
control for this stratification when conducting associa-
tion tests (i.e., by using statistical methodologies that
take into account different estimates of stratification)
(e.g., Yu et al. 2006). Second, for complex traits that are
likely to be influenced by numerous QTGs, confirming
a number of associations simultaneously can be diffi-
cult. The use of multiple biparental RILs or F2 popula-
tions has become a common mode of cross-validation
(Ehrenreich et al. 2007; Zhao et al. 2007) for moderate-
to large-scale studies in this species, but methods to
systematically replicate multiple associations detected
via association mapping techniques remains a signifi-
cant issue.

We use the wealth of genetic information on flower-
ing time as a springboard to find which genes isolated by
molecular genetic approaches may harbor common
polymorphisms that contribute to natural variation in A.
thaliana. As described in this study, it is clear that
candidate gene association studies in this species (as is
true for all association mapping analyses) are plagued
by several issues that need to be addressed. First, despite
attempts to correct for population structure, the dis-
tributions of associations among randomly selected
background SNPs still display a bias that may arise from
continued confounding by population stratification.

TABLE 2

Information regarding htSNPs with associations at FDR # 0.1

Trait HtSNP Na MAF R 2b 2ac 2a/sP
d

Trait associations
(P # 0.01)e P-value Q-value

LD-FT CO p347 265 0.41 0.06 3.62 0.56 3 0.00001 0.00187
CO p795 255 0.26 0.09 5.32 0.78 3 0.00001 0.00187
GAI p358 215 0.01 0.12 24.1 3.53 3 0.00001 0.00187
VIN3-L p5026 159 0.07 0.09 13.24 1.94 1 0.0001 0.01555
FLC p6809 268 0.09 0.04 4.88 0.71 1 0.0008 0.07775
VIN3 p2942 270 0.14 0.04 4.12 0.6 1 0.001 0.07775
GI p5241 269 0.09 0.03 4.56 0.67 1 0.0012 0.07997
FLC p3312 263 0.3 0.04 3.28 0.48 1 0.0014 0.08708
FES1 p1223 267 0.39 0.03 2.84 0.42 4 0.0019 0.0933
FES1 p1177 270 0.4 0.03 2.8 0.41 2 0.0022 0.09736

LD-RLN CO p795 255 0.26 0.02 1.14 0.34 3 0.00001 0.00428

a Number of accessions with phenotype data that were also successfully genotyped.
b The partial R 2 for the htSNP effect in a model also including Q.
c The difference between the two homozygous genotypes in the model also including Q.
d The difference between the two homozygous genotypes scaled by the standard deviation of the phenotype.
e The number of other traits that the SNP was associated with at the nominal P # 0.01 level.

TABLE 1

Flowering time htSNP associations across multiple
significance thresholds

Number of flowering time htSNPs

Threshold LD-FT SD-FT LD-RLN SD-RLN

Nominal P # 0.05 42 31 36 29
Empirical P # 0.05 22 24 23 20
Bonferroni P # 0.05 2 1 1 0
FDR # 0.05 4 0 1 0
FDR # 0.1 10 0 1 0
FDR # 0.2 16 0 1 0
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This problem is mitigated to some extent by using
empirical distributions to set significance thresholds,
providing some assurance that population structure
effects are minimized. Using this approach, we find
that 50 htSNPs in 27 flowering time candidate genes
show association across at least one trait/environment
combination. In several instances, the same htSNP
shows association across multiple traits (see Tables 2
and 3).

A second problem for structured association
mapping techniques is that in controlling for popula-
tion structure, we cull the signal of true genotype–
phenotype association from loci that are highly stratified.
Flowering time is known to exhibit geographic clines
(Stinchcombe et al. 2004) and it is also known that the
genetic variation in A. thaliana is strongly correlated
with these same geographic axes (Nordborg et al.
2005). It is thus likely that some flowering time QTGs
are strongly differentiated across subpopulations, due
to local adaptation or other causes, and that these loci
will evade detection by structured association mapping.
The extent to which such false negatives will occur
should vary across traits, with false negatives being more
problematic for traits that exhibit strong population
structure.

A third issue in association mapping studies is
multiple testing. One way to deal with this problem is
to employ a Bonferroni correction, and we find that
after applying this method SNPs in 2 genes—the
photoperiod pathway gene CO and the gibberellic acid
regulatory protein GAI—remain significantly associated

even after this conservative correction. It is clear,
however, that a Bonferroni correction may be too strict
a standard, and an alternative approach is simply to use
the FDR in determining which htSNPs may be relevant
(Storey 2002; Storey and Tibshirani 2003). Using a
strict FDR of 0.05, we find four that are significant; one
htSNP is in VIN3-L, while the others are in genes
identified in the Bonferroni correction (CO and GAI).
Moreover, the number of recognized significant associ-
ations may be increased as long as we are aware that a
more liberal FDR means a greater number of false
positives. In our study, a FDR of 0.1 identifies 10 htSNPs
in 7 genes (with one htSNP possibly being a false
positive) while an FDR of 0.2 yields 16 htSNPs in 10
genes (of which 3–4 htSNPs are likely false positives).

Another avenue to determine which significant SNPs
are worthy of further consideration is to use replication
in an independent mapping population. We study the
degree to which we can replicate candidate gene
association results by using a recently developed set of
A. thaliana MAGIC lines derived from intercrossing 19
founder accessions (Scarcelli et al. 2007; Kover et al.
2009). We retest 20 of the 50 significant htSNPs found
in 14 of 27 flowering time genes (uncorrected for
multiple tests) and observe 7 htSNPs in 5 flowering
time genes that were also significant in our MAGIC
population. The agreement between the two experi-
ments, however, was low and the MAGIC lines were able
to replicate only �20% of associations observed in the
natural accessions. This lack of concordance might be
due to differences in power between the two studies

TABLE 3

Comparison of nominal associations in accessions and MAGIC lines

HtSNP

Accessions MAGIC

LD-FT SD-FT LD-RLN SD-RLN LD-FT SD-FT LD-RLN SD-RLN

ATMYB33 p119 1 1

CO p347 1 1 1 1 1

FES1 p1877 1 1 1

FLC p2775 and p3312 1 1 1 1 1

FLC p6809 1

FRI p725 1 1

GA1 p7762 1 1 1 1

GA1 p8429 1 1 1

HOS1 p1176 and p5516 1

LD p258 1

PHYD p3094 1 1 1 1

PIE p898 1

RGL2 p2115 1 1

TFL2 p1199 1 1

TFL2 p1346 1

VIN3 p2942 1 1 1 1

VIN3-L 4961 1 1

VIN3-L p5026 1 1

Plus (+) indicates an observed nominally significant association. HtSNPs in boldface were nominally associated in both pop-
ulations for at least one trait. Positions correspond to the positions in the multiple sequence alignments in File S1. HtSNPs in the
same gene that had identical patterns of association were collapsed into a single row.
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arising from differences in allele frequencies between
the accessions and the MAGIC lines. However, this
possibility seems unlikely as these 20 htSNPs occur at
similar frequencies in the two panels (Table S7).

It is, in a sense, heartening to find that �20% of our
significantly associated htSNPs may actually be repli-
cated in an independent recombinant inbred mapping
population. These results, however, do point to the
continued difficulties in replicating and validating
association study results and the importance of identi-
fying the reasons for these difficulties. There are several
possible explanations for our failure to confirm many of
the significantly associated SNPs from the candidate
gene mapping of natural accessions: (1) Our detected
associations are spurious, (2) we lack the statistical
power to detect associations in both line sets, (3) the
environments used for growing the accessions and the
MAGIC lines were slightly different because these
experiments were conducted at different locations,
and it is possible that this difference could have had
an effect on the genotype–phenotype associations pre-
sent in each experiment, (4) the associations detected at
flowering time loci in the accessions are in some cases
due to linkage disequilibrium between flowering genes
and causal, linked loci between which disequilibrium
got disrupted during the creation of the MAGIC lines,
and/or (5) lastly, as we have stated previously (Ehrenreich

et al. 2007), the possibility that epistatic relationships
that appear as additive effects in accessions due to
historical population structure and selfing are disrupted
during the construction of inbred mapping popula-
tions. The cause of the discrepancies is unclear at this
point, but we feel this may simply reflect an intrinsically
high false positive rate in association mapping in
structured populations such as A. thaliana.

Obversely, we also appear to have a high false
negative rate (�12%) in that several SNPs are signifi-
cantly associated in the MAGIC mapping lines but not
in our structured association mapping panel. Unlike
structured accession mapping using the accessions, we
do not expect any confounding effect of population
structure in the MAGIC lines. It is thus possible that
these SNPs possess associations that we are unable to
detect in structured association mapping because they
are stratified and their signal is removed by the use
of population structure covariates in our statistical
models. We should note, however, that our genotyping
of flowering time gene htSNPs is incomplete in the
MAGIC lines, which prevents us from drawing definitive
conclusions as to the asymmetry in mapping results we
observe.

Determining the causes that contribute to the failure
to confirm many of the significant results across both
structured association and recombinant inbred MAGIC
mapping will require larger-scale experiments that can
allow a more direct comparison between mapping
results from these different populations; these experi-

ments are underway. Nevertheless, there are a handful
of genes with htSNPs that survive either stringent
statistical testing thresholds and/or replication criteria,
and these provide insight into the extent to which
known flowering time genes contribute to natural
variation in this life history trait within A. thaliana. We
can assume that htSNPs that are significant after
Bonferroni correction, the stringent FDR of 0.05, and/
or those that showed replicated associations in the
MAGIC lines, have the strongest evidence for being
biologically meaningful. Using these criteria, we have
the strongest evidence for the gene CO, which encodes a
Zn-finger transcription factor that mediates photope-
riod-dependent flowering time in A. thaliana as well as
other flowering plant species. Previous studies have
implicated photoreceptor genes such as the crypto-
chrome CRY2 (El-Assal et al. 2001; Olsen et al. 2004)
and phytochrome genes PHYA-PHYD (Aukerman et al.
1997; Maloof et al. 2001; Balasubramanian et al. 2006;
Filiault et al. 2008), but this is the first time CO
has been shown to be possibly involved in natural
variation in flowering time.

We also have very good evidence for an additional five
loci (VIN3-L, PHYD, FLC, VIN3, and GA1) as being
potential flowering time QTGs based on the htSNP
results, and these include photoperiod, vernalization,
and gibberellic hormone pathway genes. We do not
consider the significant GAI htSNP a good candidate, as
its low frequency leads us to believe the association may
be spurious. Nevertheless, if we count the six loci we
have discussed as well as the FRI gene, whose deletions
are known to affect flowering time (Johanson et al.
2000), we find that at least �4–14% of known genes in
the network have moderate- to high-frequency poly-
morphisms that contribute to natural variation in
flowering time traits in A. thaliana.

The cumulative evidence we present suggests that we
have identified putative flowering time QTGs that are
targets for further characterization and validation. It is
noteworthy that all major pathways leading to flowering
time—the photoperiod, vernalization, and gibberellic
acid pathways—are represented among our genes with
significant markers. These results suggest that the
evolution of flowering time in this species results from
the modulation of multiple pathways that are responsive
to diverse environmental and hormonal cues. Addi-
tional research can validate the effects of these genes to
determine which of them are actual QTGs, examine the
evolutionary ecological effects of variation at these
genes, and determine the molecular mechanisms that
these natural alleles may affect.
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FIGURE S1.—The known flowering time genetic network. Numerous genes have been characterized with a role in the 

flowering of Arabidopsis thaliana based on forward genetic screens.  The interactions of these genes are known in many cases based 
on genetic interaction studies, as shown here in this literature-based network.  Genes in blue or purple were included in this 
association study.  Genes in blue have soon-to-be published re-sequencing data, whereas genes in purple have published re-
sequencing data. 
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FIGURE S2.—Population structure in the genotyped accessions. A plot of ancestry estimated from Instruct and Structure for 

402 unique genotypes in the dataset (the Cvi-0 accession is excluded).  Runs from K = 2 through K = 10 are presented with the 
most likely K value in bold.  Black vertical lines separate countries or geographic regions.  Within each region, accessions are 
sorted by latitude with the lowest and highest reported latitudes of sampling within a region on the left and right sides, 
respectively.  
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FIGURE S3. —Haplotype sharing across the unique genotypes. The proportion of alleles shared between any two individuals 
are plotted as a histogram. All non-redundant pairs of unique multi-locus genotypes are included.  
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TABLE S1 

Genes included in this study 

Gene Abbreviation Gene ID Annotation 

AGAMOUS-LIKE 24 AGL24 At4g24540 MADS-box protein 
Arabidopsis thaliana CENTRORADIALIS ATC At2g27550 TFL1 homolog 
MYB DOMAIN PROTEIN 33 ATMYB33 At5g06100 Myb transcription factor 33 

BROTHER OF FT AND TFL1 BFT At5g62040 FT homolog 

CYCLING DOF FACTOR 1 CDF1 At5g62430 Dof-type zinc finger 

CONSTANS CO At5g15840 Similar to zinc finger 

CRYPTOCHROME 1 CRY1 At4g08920 Blue-light photoreceptor 

CRYPTOCHROME 2 CRY2 At1g04400 Blue-light photoreceptor 

EARLY BOLTING IN SHORT DAYS EBS At4g22140 Putative plant chromatin remodeling factor 

EARLY FLOWERING 5 ELF5 At5g62640 Nuclear targeted protein 

EARLY IN SHORT DAYS 4 ESD4 At4g15880 SUMO-specific protease 

FD FD At4g35900 bZIP transcription factor 

FD PARALOG FDP At2g17770 bZIP transcription factor 

FRIGIDA-ESSENTIAL 1 FES1 At2g33835 Zinc finger 

FLAVIN-BINDING KELCH DOMAIN F BOX PROTEIN 

1 
FKF1 At1g68050 F-box protein 

FLOWERING LOCUS C FLC At5g10140 MADS-box protein 

FLOWERING LOCUS KH DOMAIN FLK At3g04610 Nucleic acid binding 
FLOWERING PROMOTING FACTOR 1 FPF1 At5g24860 Small, 12.6 kDa protein 

FRIGIDA FRI At4g00650 Vernalization response factor 

FRIGIDA-LIKE 1 FRL1 At5g16320 FRI-related gene 

FRIGIDA-LIKE 2 FRL2 At1g31814 FRI-related gene 

FLOWERING LOCUS T FT At1g65480 TFL1 homolog; antagonist of TFL1 

FVE FVE At2g19520 Unknown 

GA REQUIRING 1 GA1 At4g02780 Gibberellin biosynthesis 

GA INSENSITIVE GAI At1g14920 Repressor of GA responses 

GAI AN REVERTANT 1; GA INSENSITIVE DWARF 1C GAr1 At5g27320 GA receptor homolog 

GAI AN REVERTANT 2; GA INSENSITIVE DWARF 1A GAr2 At3g05120 GA receptor homolog 

GAI AN REVERTANT 3; GA INSENSITIVE DWARF 1B GAr3 At3g63010 GA receptor homolog 

GIGANTEA GI At1g22770 Circadian clock gene 

HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE 

GENES 1 
HOS1 At2g39810 RING finger E3 ligase 

 

ENHANCER OF AG-4 2 HUA2 At5g23150 Transcription factor 

LUMINIDEPENDENS LD At4g02560 Transcription factor 

MOTHER OF FT AND TFL1 MFT At1g18090 Nuclease 

PHYTOCHROME AND FLOWERING TIME 1 PFT1 At1g25540 Transcription coactivator 
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PHYTOCHROME A PHYA At1g09570 
G-protein coupled red/far red 
photoreceptor 

PHYTOCHROME B PHYB At2g18790 
G-protein coupled red/far red 
photoreceptor 

PHYTOCHROME D PHYD At4g16250 
G-protein coupled red/far red 
photoreceptor 

PHYTOCHROME E PHYE At4g18130 G-protein coupled photoreceptor 

PHOTOPERIOD-INDEPENDENT EARLY 
FLOWERING 1 

PIE1 At3g12810 
ATP-dependent chromatin remodeling 
protein 

REPRESSOR OF GA1-3 RGA At2g01570 VHIID/DELLA transcription factor 

RGA-LIKE 1 RGL1 At1g66350 RGA homolog 

RGA-LIKE 2 RGL2 At3g03450 RGA homolog 

SLEEPY 1 SLY1 At4g24210 F-box protein involved in GA signaling 

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 
1 SOC1 At2g45660 Transcription factor 

SPINDLY SPY At3g11540 Glucosamine transferase 

SHORT VEGETATIVE PHASE SVP At2g22540 Transcription factor 

TERMINAL FLOWER 1 TFL1 At5g03840 Phosphatidylethanolamine binding 

TERMINAL FLOWER 2 TFL2 At5g17690 Chromatin maintenance protein 

TWIN SISTER OF FT TSF At4g20370 FT homolog 

VERNALIZATION INSENSITIVE 3 VIN3 At5g57380 Homeodomain protein 

VERNALIZATION INSENSITIVE 3-LIKE 1 VIN3-L At3g24440 Chromatin modification 
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TABLE S2 

Accessions sequenced in FLOWERS et al. (submitted) 

 
Accession Ecotype Country City 

901 Ag-0 France Argentat 

902 Cvi-0 Cape Verde Cape Verde Islands 

906 C24 Portugal Coimbra 

931 Sorbo Tajikistan Pamiro-Alay 

1602 Ws-0 Ukraine (Wassilewskija)/Djnepr 

6182 Wei-0 Switzerland Weiningen 

6603 An-1 Belgium Antwerpen 

6608 Bay-0 Germany Bayreuth 

6626 Br-0 Czech Republic Brno (Brunn) 

6674 Ct-1 Italy Catania 

6688 Edi-0 Scotland Edinburgh 

6689 Ei-2 Germany Eifel 

6714 Ga-0 Germany Gabelstein 

6732 Gy-0 France La Miniere 

6751 Kas-2 India Kashmir 

6781 LL-0 Spain Llagostera 

6796 Mrk-0 Germany Markt/Baden 

6797 Ms-0 Russia Moscow 

6799 Mt-0 Libya Martubad/Cyrenaika 

6810 Nok-3 Netherlands Noordwijk 

6824 Oy-0 Norway Oystese 

6885 Wa-1 Poland Warzaw 

6896 Wt-5 Germany Wietze 

6922 Nd-1 Germany Niederzenz 
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TABLE S3 

SNP associations for flowering time 

Table S3 is available for download as an Excel file at http://www.genetics.org/cgi/content/full/genetics.109.105189/DC1. 
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TABLE S4 

A. thaliana accessions in the study 

Table S4 is available for download as an Excel file at http://www.genetics.org/cgi/content/full/genetics.109.105189/DC1. 
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TABLE S5 

SNP genotype data for the accessions 

Table S5 is available for download as a text file at http://www.genetics.org/cgi/content/full/genetics.109.105189/DC1. 
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TABLE S6 

Broad-sense heritabilities (H2) for flowering traits in the association mapping panel 

 
Trait Mean (S.E.) Min. 2.5% Max. 2.5% VGa VEb H2c 

----Accessions in long day---- 

Days to Flower 43.95 (0.13) 37 63 35.95 15.71 0.7 

Rosette Leaf Number 12 (0.07) 7 22 9.02 4.83 0.65 

----Accessions in short day---- 

Days to Flower 54.01 (0.21) 43 86.65 75.45 54.04 0.58 

Rosette Leaf Number 18.24 (0.11) 10 32 15.51 16.44 0.49 

 

----MAGIC lines in long day---- 

Days to Flower 39.54 (0.32) 25 69.75 79.87 42.98 0.65 

Rosette Leaf Number 25.21 (0.37) 10 60 98.96 70.67 0.58 

----MAGIC lines in short day---- 

Days to Flower 61.52 (0.32) 39.03 67 62.07 35.39 0.64 

Rosette Leaf Number 35.3 (0.42) 14 67 57.95 115.71 0.33 

 
Note: 10 replicates were grown per accession and five replicates were grown per MAGIC line, though in some cases 
not all replicates survived to maturity. 
 
a Among-ecotype variance component from ANOVA. 
 
b Residual variance component from ANOVA. 
 
c Calculated as VG/(VG  + VE). 
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TABLE S7 

Allele frequencies of htSNPs that were nominally significant in the accessions and were also genotyped in the 

MAGIC lines 

 

HtSNP NAccessions MAFAccessions NMAGIC MAFMAGIC 

ATMYB33 p119 139 0.29 334 0.49 

CO p347 265 0.41 335 0.47 

FES1 p1877 270 0.47 336 0.45 

FLC p2775 258 0.1 334 0.24 

FLC p3312 267 0.3 337 0.26 

FLC p6809 268 0.09 335 0.09 

FRI p725 274 0.28 334 0.46 

GA1 p7762 270 0.11 336 0.18 

GA1 p8429 273 0.37 335 0.34 

HOS1 p1176 273 0.23 336 0.18 

HOS1 p5516 270 0.17 332 0.14 

LD p258 255 0.2 296 0.16 

PHYD p3094 272 0.21 336 0.25 

PIE p898 219 0.23 335 0.29 

RGL2 p2115 269 0.22 334 0.3 

TFL2 p1199 269 0.15 336 0.33 

TFL2 p1346 258 0.37 337 0.34 

VIN3 p2942 274 0.14 337 0.07 

VIN3-L p5026 159 0.07 334 0.03 

VIN3-L 4961 168 0.19 334 0.21 

 
 
 


